Chemical evolution to select for protective epitopes against biologic tick transmission of Anaplasma marginale

Veterinary Research Scholars Program University of Missouri

<u>Babatunde Ibrahim Olowu¹, Stefan Keller², Samuel Shahzad², Roger Stich²</u> ¹Faculty of Veterinary Medicine, University of Ibadan, Nigeria ²Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia MO

Background

- Ixodid ticks transmit pathogens to people and animals.
- These ectoparasites are important livestock pests that transmit etiologic agents of four of the five major vector-borne diseases of cattle, worldwide. Infections transmitted from ticks to people are zoonotic.

Results

- Tick-borne pathogens of people also infect companion animals.
- Host immunity to ticks is an alternative approach to tick-borne disease control.
- compare transmission of Anaplasma marginale to cattle immunized with different tick-derived antigen preparations.
 - immunized with one of these preparations.
- reactive to antisera collected from protected hosts.

elicit protection from the biologic transmission of *A. marginale* and related pathogens by tick vectors.

displaying random peptide epitopes.

Figure 1

Pictural depiction of the methodology used for the negative selection of phage library with non-protective antisera.

- Selection of M13 reactive to IgG from protected hosts by positive selection of precleared library
- Identify common peptide motifs in reactive M13
- Computational analysis
- Laboratory validation

	ſ ∎]¥⊁ſ∎]	References	Acknowledgements
		 George P. Smith and Valery A. Petrenko, Chemical Reviews 1997 97 (2), 391-410, DOI: 10.1021/cr960065d 	This project was supported by Agriculture and Food Research Initiative Competitive Grant no. 2017-67015-26630 from the USDA National Institute of Food and Agriculture.
		 Minjauw, B., and A. McLeod. 2003. Tick-borne diseases and poverty. The impact of ticks and tick-borne diseases on the livelihood of small scale and marginal livestock owners in India and eastern and southern Africa. 	Babatunde Olowu's stipend was provided by University of Missouri, College of Veterinary Medicine Office of Research. Stefan Keller is a 2021 FFAR Veterinary Fellow. Sammuel Shahzad was supported by a Fulbright Grant.