Diet composition analysis based on stomach contents of Flathead Catfish in northern Missouri reservoirs Jayla Brown¹, BS and Katrina Knott², MS, PhD

- consumers.
- concentrations in apex predators.

- gap of mercury concentrations in the species.
- position
- initiated by fish size, environment and available prey.
- trophic transfer in this species.

examination of stomach contents.

determine the transition from benthic feeding to piscivory.

Methods

¹College of Veterinary Medicine, University of Missouri-Columbia ²Ecological Health Unit, Science Branch, Missouri Department of Conservation

• Catfish are known to regurgitate their stomach contents during stress.

- allowing regurgitation and digestion.
- digestion due to have higher water content.
- during freeze-thawing.
- size classes.
- Diet composition did not differ by reservoir but was most influenced by fish size.
 - Sunfish.
- Gizzard Shad.
- The high proportion of crayfish in the diet of small Flathead Catfish suggests the transition away from benthic feeding reservoirs than previously described. at ~280mm in total length.

- Data are needed on the mercury concentration and trophic bioaccumulation in Flathead Catfish.
 - identifiable prey items for analyses of mercury and the feeding ecology by stable isotope analyses.
- If Crayfish contain higher mercury concentrations than prey fish, we expect to see minimal change in mercury piscivory.
 - fish (Gizzard Shad), mercury concentrations would be expected to increase with size.

Baumann, J. R. & Kwak, T. J. (2011). Trophic Relations of Introduced Flathead Catfish in an Atlantic River, Transactions of the American Fisheries Society, 140:4, 1120-1134, DOI:10.1080/00028487.2011.607046 Brown, B. E. & Dendy, J.S. (1961). Observations on the Food Habits of the Flathead and Blue Catfish in Alabama. Proceedings of the Fifteenth Annual Conference, Southeastern Association of Game and Fish Commissioners, October 22-25, 1961: 219-222. Slaughter, J. E. & Jacobson, B. (2008). Gape : Body Size Relationship of Flathead Catfish. North American Journal of Fisheries Management, 28:198-202. DOI 10.1577/M06-033.1 Sutton, K. (2020, June 5). Flathead catfish for the plate. Game & Fish. https://www.gameandfishmag.com/editorial/flathead-catfish-for-the-plate/376962

This project was supported by Boehringer Ingelheim and Missouri Department of Conservation Environmental Health Program funds. I would like to thank Fisheries Staff for collecting the fish and Emile Ellingsworth, Steffanie Abel, Bailey O'Brian, and Cheyenne Stratton for their assistance with this project.

Veterinary Research Scholars Program University of Missouri

Discussion

• The results of this study may underestimate stomach contents.

• The higher percentage of fish without stomach contents in Cameron 3 Lake (79% compared to 26-66% in other lakes) is likely because fish were left overnight in a bubbler tank,

• Fish consumption may be underestimated because of rapid

• Invertebrates were only identified in 2 stomachs, meaning they could have been digested too quickly tor degraded

• Future recreations of this study may benefit from usage of pulsed gastric lavage quickly after fish collection to conserve stomach contents in more individuals, especially in smaller

• Fish <500mm consumed small (50-100mm) Crayfish and

• Fish >500mm consumed large (120-290mm) Crappie and

occurs at a larger size for individuals from northern Missouri

• A 1961 publication by Brown and Dendy found Flathead Catfish diet transitions from an aquatic insect/crayfish to fish

Next Steps

position of prey items to determine their contribution to mercury

• Samples were collected from Flathead Catfish and

concentrations, or even mercury biodilution, in Flathead Catfish as total length increases and diet shifts from benthic feeding to

• However, if large Flathead Catfish consume proportionately more high trophic level fish (Crappie) than low trophic level

References

Acknowledgments

Images provided by MDC and Bailey O'Brian.